针对pandas merge之后数据类型发生改变

pandas的表合并方式具体这里我就不讲了,这里百度有很多。
里面有一个 merge 合并之后数据类型改变的问题,百度之后也没有得出很好的结果。
这里会出现一种情况:

两个整形的数据经过合并之后变成了浮点型。

这个变化在小数据量时区别可能不是很大,只是相对比较麻烦一点。大量数据的话涉及到数据之间的交互(运算)会消耗大量时间。当然你要是说手动把他再强转回来,就当我没说。

为什么会出现这种情况呢?

经过一系列测试之后,发现问题在于合并方向,有人说right能够避免这个问题,left会出现这种问题,那就是胡扯。
问题在于数据是从大到小还是从小到大。这里面说的数据大小值得是特征属性的个数(也可以说是行数)
大表(小数量)向小表(大数量)合并时,相当于将大表增加几个特征,行并未发生改变。
大表向小表合并时,由于小表数据量不足,不足以提供给大表合并,这里面就涉及到nan值填充,填充到和大表一样的数据量在进行合并。经过填充过后,nan和整形数据合并就变成了浮点型。
明白这个原理之后,合并之前比较一下shape,注意大小表的方向,就不会出现这种类型改变的问题了。

当然个人观点,如有不对指出。欢迎指点!!!

 

转载自博客:https://www.geek-share.com/detail/2765284817.html

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页